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Abstract. We present a “hierarchical” strategy for phase space generation in order to efficiently map the
antenna momentum structures, typically occurring in QCD amplitudes.

1 Introduction

The reliable description of multi-jet production at the
LHC [1] will be an important issue. This is not only re-
lated to the study of QCD in multi-parton final states,
but it is also very important in order to estimate several
backgrounds for new physics effects. For instance, new un-
stable massive particles that decay to many partons may
be discovered at the LHC only when a reliable description
of these final states is established.

In this respect, apart from the problem of computing
scattering matrix elements with many particles, also the
efficient phase space generation is of great importance,
because the scattering amplitudes in QCD exhibit strong
peaking structures in phase space, which have to be taken
into account by the generation algorithm. Flat phase space
generators, like RAMBO [2], will not be adequate for this
task. In the last years several methods to efficiently inte-
grate the peaking structures of the scattering amplitudes
have emerged and have been used in several contexts [3].
For instance, PHEGAS [4] is an example where an effi-
cient, automated mapping of all possible peaking struc-
tures of a given scattering process has been established.
The algorithm is based on the “natural” mappings dic-
tated by the Feynman graphs contributing to the given
process, so that the number of kinematical channels used
to generate the phase space is equal to the number of Feyn-
man graphs. Using adaptive methods, like multi-channel
optimization [5] and by throwing away channels that are
negligible, we may end up with a few channel genera-
tor exhibiting a high efficiency, as is indeed the case in
n(+γ)-fermion production in e+e− collisions. In contrast,
the QCD scattering amplitudes point towards the opposite
direction: a large number of Feynman graphs which means
a large number of kinematical channels which, moreover,
contribute equally to the result.

A way out of this problem may be based on the long-
standing remark that the n + 2-gluon amplitude may be
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described by a very compact expression when special he-
licities are assigned to the gluons, which, combined with
the leading color approximation, results in

∑

c

|M|2 = 8
(

Nc

2

)n

(N2
c − 1) (1)

×
n+2∑

1≤i<j

(pi · pj)4
∑

P (2,...,n+2)

An+2(p1, . . . , pn+2),

where Nc refers to the number of colors,

An+2(p1, . . . , pn+2) (2)
:= [(p1 · p2)(p2 · p3) · · · (pn+1 · pn+2)(pn+2 · p1)]−1,

and the sum over all permutations of the 2nd to the (n +
2)nd argument of this function is taken, with the exception
of those that are equivalent under reflection, i �→ n+4− i
[6].

SARGE [7] is the first known example of a phase space
generator that deals with the momentum structures en-
tering the above expression, namely with (2), known as
antenna structures. The algorithm is based on the “demo-
cratic” strategy to generate the n body phase space, as
is the case for RAMBO, and it makes use of the scale
symmetry of the antenna to achieve the required goal.

In this paper, we study the “hierarchical” strategy for
phase space generation in order to efficiently map the mo-
mentum antenna structures. The idea is as follows. Us-
ing the standard two-body phase space (neglecting factors
of 2π)

dΦ2(P ; s1, s2; p1, p2) (3)
:= d4p1 δ+(p2

1 − s1) d4p2 δ+(p2
2 − s2)δ4(P − p1 − p2),

we decompose the phase space as follows:

dΦn(P ; p1 . . . , pn)

:=
( n∏

i=1

d4piδ+(p2
i − σi)

)
δ4
( n∑

i=1

pi − P
)
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= dsn−1dΦ2(Qn; σn, sn−1; pn, Qn−1)
× dsn−2dΦ2(Qn−1; σn−1, sn−2; pn−1, Qn−2)

... (4)
× ds2dΦ2(Q3; σ3, s2; p3, Q2)dΦ2(Q2; σ2, σ1; p2, p1).

The task is to express the phase space in terms of the
invariants pi ·pj appearing in the antenna structure (2), so
that, using a suitable mapping, we can construct a density
that, apart from constant and soft terms, will be identical
to this antenna structure.

In the first section, we describe the basic building block
of the algorithm, which is the expression of the two-body
phase space in terms of the scaled invariants. In the second
section, we demonstrate how this basic building block can
be used in a sequential way to produce the full antenna.
Finally in the third section, some details concerning the
numerical implementation of the algorithm as well as com-
parisons with known generators are given. The appendices
present all relevant generation algorithms from which the
exact functioning of the generator can be reconstructed.

2 The hierarchical antenna

2.1 The basic building block

To illustrate the idea we consider the generation of the 2-
body phase space (3) when two massless antenna momenta
q1, q2 are given. The momentum P can be decomposed as

Pµ = rqµ
1 + Aµ

1 =: Aµ
1 + Bµ

1 with r = P 2/(2P · q1),

so that the Sudakov parameterization of p1 is given by

pµ
1 = a1A

µ
1 + b1B

µ
1 + kµ

1 ,

where the variables a1 and b1 are given by

a1 =
p1 ·B1

A1 ·B1
, b1 =

p1 ·A1

A1 ·B1
.

The same can be done in terms of p2 and q2, and in the
center-of-mass frame (CMF) of P , where P = (s1/2, 0,
0, 0), cos(∠(�q1, �q2)) = c and s = (1−c2)1/2, one can choose

A1 =
1
2
√

s(1, 0, 0,−1), A2 =
1
2
√

s(1, 0,−s,−c),

B1 =
1
2
√

s(1, 0, 0, 1), B2 =
1
2
√

s(1, 0, s, c),

k1 = (0, x1, x2, 0), k2 = (0, x2, y2c,−y2s).

The phase space can now be completely expressed in terms
of a1 and a2, leading to

dΦ2(P ; p1, p2) = da1da2Π
(−1/2)Θ(Π), (5)

with

Π(a1, a2) = 4s2[(1− a2 + s̄2 − s̄1)a2 − s̄2] (6)

− [(1− 2a1 − s̄1 + s̄2) + (1− 2a2 − s̄1 + s̄2)c]2,

where s̄1,2 = s1,2/s, and where Θ is the step function. In
terms of Lorentz invariants, the parameters a1 and a2 are
given by

a1 =
q1 · p1

q1 · P , a2 =
p2 · q2

P · q2
. (7)

So in order to obtain a two-body phase space with a den-
sity which depends on the invariants a1, a2 following some
given function f(a1, a2), one has to generate a1, a2 follow-
ing a density proportional to f(a1, a2) × Π(−1/2)(a1, a2)
in the region where Π(a1, a2) > 0, and construct the mo-
menta following the Sudakov parameterization. Explicitly,
the direct construction is given by

p0
1 ← (s + s1 − s2)/(2

√
s),

p3
1 ← p0

1 −
√

sa1,

p2
1 ← ((

√
s− p0

1 −
√

sa2) + cp3
1)/s,

p1
1 ← ε((p0

1)
2 − s1 − (p2

1)
2 − (p3

1)
2)1/2,

where ε should be a fair random variable which can take
values +1 and −1. For more details about this procedure,
we refer the reader to Appendix A.

2.2 Antenna generation

In the hierarchical/sequential approach, the generation
strategy proceeds through a sequence of two-body phase
space generations following the decomposition (4). At each
two-body generation, one final-state momentum pk is gen-
erated, together with the sum Qk−1 of the remaining final-
state momenta to be generated. This suggests one to label
the momenta in a way opposite to the order of generation,
so first pn, Qn−1 are generated, then pn−1, Qn−2 and so on.
The starting point is the CMF of the initial momenta q1
and q2, with Qn = q1 + q2 being the overall momentum.
The CMF of momentum Qk we denote by CMFk. The pair
pk, Qk−1 is generated by generating variables a

(k)
1 , a

(k)
2 and

constructing the momenta as described before. These vari-
ables are now equal to

a
(k)
1 =

pk+1 · pk

pk+1 ·Qk
and a

(k)
2 =

q2 ·Qk−1

q2 ·Qk
.

This happens in CMFk, so in order to obtain pk, Qk−1,
the constructed momenta have to be boosted such that
((Q2

k)1/2, 0, 0, 0) is transformed to Qk.
We would like to generate the momenta following a

density that is proportional to

An+2(q1, pn . . . , p1, q2)
= [(q1 · pn)(pn · pn−1) . . . (p1 · q2)]−1. (8)

Since the integrand is infra-red singular, a cut-off on the
invariants is necessary. Therefore, we define a symmetric
matrix σij which encodes the restrictions on the momenta
through

σii = σi = p2
i ,
√

σiσj ≤ σij ≤ pi · pj
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and

Σk :=
k∑

i=1

σi. (9)

Before we proceed, we make three observations. Firstly,
we have

pk+1 ·Qk = (Q2
k+1 −Q2

k − p2
k+1)/2.

Secondly, we have

sk+1 −Σk+1

(sk+1 − σk+1 − sk) (sk −Σk)

=
d

dsk
log
(

sk −Σk

sk+1 − σk+1 − sk

)

=: gk+1(sk), (10)

and thirdly, we can write

An+2(q1, pn . . . , p1, q2)

=
1

2n−1 (sn −Σn)(q1 ·Qn)(q2 ·Qn)

×
(

3∏

k=n

gk(sk−1)
1

a
(k)
1 a

(k)
2

)
1

a
(2)
1 a

(2)
2

,

with sn = Q2
n, pn+1 = q1 and Q1 = p1. These observations

suggest that the phase space generation

dsn−1gn(sn−1)da
(n)
1

1

a
(n)
1

da
(n)
2

1

a
(n)
2

Π
(−1/2)
(n) Θ(Π(n))

dsn−2gn−1(sn−2)da
(n−1)
1

1

a
(n−1)
1

da
(n−1)
2

1

a
(n−1)
2

Π
(−1/2)
(n−1)

×Θ(Π(n−1))
...

ds2g3(s2)da
(3)
1

1

a
(3)
1

da
(3)
2

1

a
(3)
2

Π
(−1/2)
(3) Θ(Π(3))

da
(2)
1

1

a
(2)
1

da
(2)
2

1

a
(2)
2

Π
(−1/2)
(2) Θ(Π(2)) (11)

will lead to a density for the momenta that is proportional
to An+2. Three variables are generated in each CMFk,
namely sk−1, a

(k)
1 and a

(k)
2 . Just like the integration of

sk−1, (10), also the integration of a
(k)
1 , a

(k)
2 results in a vol-

ume factor that depends on the corresponding variables
generated in CMFk+1. As we will show in Appendix A,
however, these factors are logarithmic functions of their
arguments and exhibit a non-singular behavior, and we
call them soft factors. The total actual density will there-
fore be the product of n−1 soft factors times the antenna
structure under consideration.

In the end, we want to generate all permutations in the
momenta of (8). Those for which q1 and q2 each appear in
two factors (none of which is q1 · q2) cannot be obtained

by simple re-labeling. In order to obtain these, we observe
that they can be decomposed into two antennas, namely

Am+2(q1, pm, pm−1, . . . , p2, p1, q2)
× An−m+2(q2, pn, pn−1, . . . , pm+2, pm+1, q1) (12)

and each of these can be generated after the decomposi-
tion,

dΦn(P ; p1 . . . , pn)
= dsmdsn−mdΦ2(Qn; sm, sn−m; Qm, Qn−m) (13)
× dΦm(Qm; p1, . . . , pm)dΦn−m(Qn−m; pm+1, . . . , pn).

In order to combine the two sub-antennas to the required
antenna structure, we have to take into account in the first
decomposition a density that is proportional to

Θ(
√

sn −√sm −√sn−m)
(q1 ·Qm)(q1 ·Qn−m)(q2 ·Qm)(q2 ·Qn−m)smsn−m

. (14)

The case of m = 1 is still special. In this case, the first
step in (11) should be replaced by

dsn−1g
′(sn−1)da

(n)
1 da

(n)
2 Π

(−1/2)
(n) Θ(Π(n))

× 1

a
(n)
1 a

(n)
2 (1− a

(n)
1 )(1− a

(n)
2 )

, (15)

and the rest of the sequence should go on with the replace-
ment of pn by pn+1 at the second step. For the density g′
we refer to Appendix A. There we have collected all in-
tegrals and generation algorithms related to the antenna
generation described so far.

2.3 Open antennas

As will be clear from the numerical analysis presented in
the next section, the soft factors appearing in the descrip-
tion of the QCD antenna contribute to a certain extent
to the variance of the Monte Carlo integration. There
is an alternative approach, that still follows the hierar-
chical/sequential generation strategy, and gives better re-
sults. It is based on the observation that the production
of an “open” antenna structure, namely one where the
last product q2 · p1 is missing, is simpler, since it can be
constructed without using the variables a

(k)
2 . They can

be replaced by flatly generated azimuthal angles, to that
da

(k)
2 Π

(−1/2)
(k) Θ(Π(k)) → dϕ(k). The basic decomposition

therefore becomes

dsn−1gn(sn−1)dϕ(n)da
(n)
1

1

a
(n)
1

× dsn−2gn−1(sn−2)dϕ(n−1)da
(n−1)
1

1

a
(n−1)
1

× · · ·

· · · ×ds2g3(s2)dϕ(3)da
(3)
1

1

a
(3)
1

dϕ(2)da
(2)
1

1

a
(2)
1

. (16)

This way, we will get the antenna density (8) without the
factor p1 · q2 in the denominator, which is the reason why
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Table 1. Results for the single-channel integration/generation

jets algorithm Ngen Nacc I ∆I f ε (%)

4
SARGE 1 × 105 34853 .251 × 10−9 .734 × 10−11 85.9 0.34
HAAG 5 × 104 31193 .260 × 10−9 .280 × 10−11 5.75 1.77

HAAG(C) 5 × 104 28366 .256 × 10−9 .252 × 10−11 4.84 4.22

5
SARGE 2.5 × 105 30960 .438 × 10−10 .153 × 10−11 307 0.23
HAAG 6.5 × 104 29855 .442 × 10−10 .640 × 10−12 13.6 1.02

HAAG(C) 6.5 × 104 24345 .441 × 10−10 .706 × 10−12 16.7 1.04

6
SARGE 1 × 106 28383 .487 × 10−11 .164 × 10−12 1141 0.21
HAAG 1.2 × 105 32070 .487 × 10−11 .658 × 10−13 21.9 1.48

HAAG(C) 1.2 × 105 25040 .485 × 10−11 .886 × 10−13 40.1 0.69

we call this an “open” antenna. A “closed” antenna can be
obtained using the fact that, by combining two open an-
tennas, one can choose for another factor from the antenna
string to be missing. Then, a multi-channeling procedure
can be performed with these different choices, leading to
a density that is, roughly speaking, proportional to

(q1 · pn) + (pn · pn−1) + · · · + (p3 · p2) + (p2 · p1) + (p1 · q2)
(q1 · pn)(pn · pn−1) · · · (p3 · p2)(p2 · p1)(p1 · q2)

.

To get the different choices, a first splitting of Qn into
Qm and Qn−m has to be performed, after which open
antennas are generated from each of these, one with q1
and the other with q2 as initial momentum. For details,
we refer to Appendix B.

3 Results

In this section, we present results obtained by SARGE and
HAAG1, the program that implements the hierarchical
algorithm described before. In order to be as general as
possible, the only cut we apply is

(pi + pj)2 ≥ s0,

where i, j(i �= j) runs from 1 to n+2 where n is the num-
ber of final-state particles. Unless explicitly mentioned
differently, we use s0 = 900 GeV2 and the total energy
s1/2 = 1000 GeV. Moreover, all particles are assumed to
be massless in order to compare with SARGE, with which
only massless particles can be treated.

As it was mentioned in the introduction, we are inter-
ested in integrating sums of QCD antenna structures (2).
We start by considering the simplest case, namely inte-
grating the function

s2[(p1 · p3)(p3 · p4)(p4 · p2)(p2 · p5) . . . (pn+2 · p1)]−1 (17)

that corresponds to a given permutation of the momenta,
namely (1, 3, 4, 2, 5, . . . , n + 2). In Table 1 we give the re-
sults for SARGE, HAAG with open antenna generation,
and HAAG(C) with closed antenna generation. In all three

1 HAAG stands for: Hierarchical AntennA Generation

codes the same single channel, corresponding to (17), has
been used in the generation. Ngen and Nacc are the number
of generated and accepted events, and we define f by

f :=
V2

I2 ,

where V2 is the quadratic variance and I is the estimated
integral. f is clearly a measure of the efficiency of the
generator. Moreover ε, defined as

ε :=
〈w〉

wmax
,

is the usual generation efficiency related for instance to
“unweighted” events in a realistic simulation. The results
agree well, and exhibit the fact that the generated densi-
ties of the generators the hierarchical type are much closer
to the integrand. Moreover, the closed antenna algorithm
HAAG(C) becomes less efficient compared to the open one
as the number of particles increases. The same picture is
reproduced for an arbitrary permutation.

For a realistic QCD calculation, the integrated func-
tion may be approximated by a sum over permutations.
Therefore, an efficient generator has to include all possible
channels, where each channel corresponds to a given per-
mutation of the momenta. In that case, a multi-channeling
optimization procedure can be applied, which is incorpo-
rated in HAAG. In order to study the efficiency of this
optimization we consider the same integration as before,
but with all channels contributing to the generation and
allowing for optimization. In this optimization procedure,
we discard channels that contribute less than a certain pre-
determined fraction to the set of available channels. It is
expected, of course, that in end the right permutation will
be “chosen” by the optimization. This is indeed the case
and the results are presented in Table 2. We see that the
optimization results in a picture close to the one obtained
with the single channel generation, with some noticeable
improvement in the case of SARGE. We also include re-
sults with SARGE.n, a slightly different version, described
in Appendix C.

As is the case for any multi-channel generator, a com-
putational complexity problem arises when the number of
channels increases. For instance, in our case we are facing
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Table 2. Results for the all-channel generation with optimization

jets algorithm Ngen Nacc I ∆I f ε (%)

4
SARGE 1 × 105 52516 .262 × 10−9 .294 × 10−11 12.6 1.29

SARGE.n 1 × 105 46529 .260 × 10−9 .298 × 10−11 13.2 1.55
HAAG 5 × 104 34293 .257 × 10−9 .210 × 10−11 3.36 4.28

HAAG(C) 5 × 104 29736 .259 × 10−9 .227 × 10−11 3.84 3.91

5
SARGE 2.5 × 105 32315 .422 × 10−10 .106 × 10−11 159 0.44

SARGE.n 2. × 105 30994 .440 × 10−10 .807 × 10−12 67.2 0.83
HAAG 6.5 × 104 31063 .444 × 10−10 .503 × 10−12 8.32 1.17

HAAG(C) 6.5 × 104 24179 .436 × 10−10 .593 × 10−12 12.03 1.84

6
SARGE 1 × 106 29138 .476 × 10−11 .145 × 10−12 933 0.45

SARGE.n 1 × 106 35445 .492 × 10−11 .109 × 10−12 492 0.25
HAAG 1.2 × 105 33278 .483 × 10−11 .595 × 10−13 18.2 1.19

HAAG(C) 1.2 × 105 24126 .471 × 10−11 .749 × 10−13 30.3 1.21

Table 3. All-channel integration with subsets of channels for generation

# channels 2520 1500 1000 500 200 50 10

f 5.33 5.37 5.48 5.72 6.14 11.6 84.7
Nacc 26630 26521 26437 26676 27009 27190 27205
ε(%) 11.2 13.1 11.6 7.1 7.5 1.7 0.28

a number of (1/2)(n + 1)! channels! On the other hand,
it is also clear that the channels we are considering have
a large overlap in most of the available phase space. It is
therefore worth to investigate the dependence of the inte-
gration efficiency on the number of channels used. This is
presented in Table 3, where the full antenna

s2
∑

P (2,...,n+2)

[(p1 · p3)(p3 · p4)(p4 · p2)(p2 · p5)

. . . (pn+2 · p1)]−1 (18)

is integrated, using a number of channels that has been
selected on a random basis. We see the rather interesting
phenomenon that a decent description can be achieved
with a much smaller number of channels. Variations of this
technique of using only subsets of channels, for example
choosing another subset after each step of multi-channel
optimization, lead to the same picture.

The complete results of the integration of the full an-
tenna are presented in Table 4. We see that HAAG has
a much better f factor than SARGE. On the other hand
the ε exhibits a less dramatic effect. This is related to the
fact that SARGE generates a phase space that is much
larger than the one defined by the cut on s0. In that sense,
if the main time consumption in a given computation is
spent over the evaluation of the integrand (matrix ele-
ment squared), it is fairer to compare the square of the
estimated expected error, normalized by the number of
accepted events Nacc. In that case we see that HAAG is
still 2–3 times more efficient, and if we consider a smaller
cut, namely s

1/2
0 = 10 GeV, this gain goes up to an order

of magnitude (Table 5).

For a realistic calculation of the cross section of a QCD
process, one may assume that the time it takes to perform
one evaluation of the integrand is much larger than the
time it takes to generate one accepted event and to cal-
culate the weight. This means that the computing time is
completely determined by the number of accepted events
Nacc. We introduce

Naccf

Ngen

as a measure of the computing time. For a realistic calcu-
lation, one has to multiply this number by the evaluation
time of the integrand, and divide by the square of the rela-
tive error one wants to reach. Figure 1 shows this quantity
as function of the number of produced partons using the
data of Table 5. According to this graph, a calculation with
SARGE would take 10 times longer than the calculation
with HAAG.

Finally, Fig. 2 shows the dependence of the result on
the value of the infrared cut-off s

1/2
0 and the number of

produced partons. The function clearly exhibits a nega-
tive power behavior for s0. Moreover, the curve becomes
steeper with increasing number of jets, suggesting that at
least the leading power is related to the final-state multi-
plicity.

4 Conclusions

HAAG exhibits an improved efficiency compared to
SARGE for multi-parton calculations. It is also more pow-
erful in describing densities where a partial symmetriza-
tion over the permutation space is considered. Finally,
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Table 4. Results for the all-channel integration

jets algorithm Ngen Nacc I ∆I ε (%) f

4
SARGE 1 × 105 47483 .166 × 10−7 .115 × 10−9 4.21 4.8
HAAG 6 × 104 42019 .167 × 10−7 .810 × 10−10 12.01 1.4

5
SARGE 3 × 105 39095 .176 × 10−7 .162 × 10−9 3.27 25.6
HAAG 1.2 × 105 55234 .177 × 10−7 .856 × 10−10 7.53 2.7

6
SARGE 1.5 × 106 44529 .157 × 10−7 .135 × 10−9 2.95 109
HAAG 1.8 × 105 47911 .161 × 10−7 .905 × 10−10 7.15 5.7

7
SARGE 1 × 107 47766 .123 × 10−7 .988 × 10−10 3.02 642
HAAG 3.6 × 105 45599 .123 × 10−7 .241 × 10−10 5.11 13

8
SARGE 1 × 108 53560 .784 × 10−8 .554 × 10−10 3.29 4998
HAAG 1 × 106 49206 .789 × 10−8 .496 × 10−10 6.30 39

Table 5. Results for the all-channel integration with s0 = 100 GeV2

jets algorithm Ngen Nacc I ∆I ε (%) f

4
SARGE 1 × 105 60986 .364 × 10−6 .548 × 10−8 0.631 22.7
HAAG 6 × 104 46763 .366 × 10−6 .235 × 10−8 4.34 2.47

5
SARGE 2 × 105 43150 .619 × 10−6 .165 × 10−7 0.29 142
HAAG 1 × 105 56034 .643 × 10−6 .465 × 10−8 1.84 5.23

6
SARGE 1 × 106 67811 .114 × 10−5 .257 × 10−7 0.28 502
HAAG 1.4 × 105 51983 .111 × 10−5 .883 × 10−8 2.50 8.83

7
SARGE 5 × 106 84391 .186 × 10−5 .346 × 10−7 0.176 1723
HAAG 2 × 105 44015 .192 × 10−5 .177 × 10−7 2.24 16

8
SARGE 5 × 107 175541 .354 × 10−5 .517 × 10−7 .119 10618
HAAG 5 × 105 58874 .350 × 10−5 .289 × 10−7 1.65 34

0

10

20

30

40

4 5 6 7 8

SARGE
HAAG

Fig. 1. Naccf/Ngen (a measure of computing time) as function
of the number of produced partons

HAAG makes no fundamental distinction among massless
and massive particles, so it can be used for an arbitrary
multi-partonic process.
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Fig. 2. The integral of the full antenna as a function of s
1/2
0

for different values of the number of produced partons
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Appendices

The following appendices contain details about the gener-
ation of the various random variables necessary to build
a phase space with the desired density. The techniques
used to achieve this are inversion, rejection and multi-
channeling. For details of these techniques, we refer to [8].
We only want to mention that inversion is applicable if
one has an analytic expression (with reasonable complex-
ity) of the inverse of the indefinite integral of the density.
Rejection can be applied if one knows a function which
is strictly larger than the density and is proportional to
a density one is able to generate. The efficiency is given
by one divided by the integral of that function. Multi-
channeling can be used if the density can be written as
the weighted sum of densities, each of which one is able
to generate, and if the weights are positive.

A Closed antenna

In this appendix we present all relevant algorithms for the
generation of the closed antenna. More specifically, in the
following we describe the generation of the three variables
sk−1, a

(k)
1 and a

(k)
2 that are needed to describe the antenna

at the kth CMF. Most of the time the superscript (k) is
omitted for convenience.

A.1 Generation of sk−1

Since the indefinite integral is given in (10), we see that
sk−1 can be generated with inversion. The limits are given
by

sk −∆k−1 ≥ sk−1 ≥ Λk−1,

with

Λk = Σk +
k∑

i �=j

σij , ∆k = σk+1 + 2
k∑

i=1

σk+1,i, (19)

and the weight factor is

log
(

sk −Σk−1 −∆k−1

∆k−1 − σk

)
+ log

(
sk − σk − Λk−1

Λk−1 −Σk−1

)
.

In the case of m = 1 (15) we simply have

∫
dsk−1

1
sk−1 −Σk−1

= log(sk−1 −Σk−1), (20)

so that the weight factor is

log (sk −∆k−1 −Σk−1)− log (Λk−1 −Σk−1) .

A.2 Generation of a1, a2

The general integral corresponding to the generation of
a1, a2 is given by

∫
da1da2

Θ(Π(a1, a2))Θ(a1 − a
(0)
1 )Θ(a2 − a

(0)
2 )

a1a2
√

Π(a1, a2)
, (21)

where Π is defined in (6), and a
(0)
1 , a

(0)
2 are possibly nec-

essary infra-red cut-offs. We shall analyze this integral by
first integrating over the a2-variable, and then over the a1-
variable. The generation has then to be performed in the
opposite order: first a1 and then a2. As we shall see, the
inclusion of the cut-off on a1 does not lead to complica-
tions, but the inclusion of both cut-offs does. For that case,
we see two solutions. Firstly, we can replace the integral
by

∫
da1da2

Θ(Π(a1, a2))Θ(a1 − a
(0)
1 )

a1(a2 + h)
√

Π(a1, a2)
,

where h is related to a
(0)
2 . This, of course, changes the

actual density with which a1 and a2 are generated, but
may, for small h, still be considered suitable for the de-
sired antenna structure. Also, the final antenna generator
will cover phase space less efficiently (will generate “too
much” phase space), simply because less cuts are included
analytically. In the second solution, we write the integrand
as the sum

Θ(Π(a1, a2))Θ(a1 − a
(0)
1 )

a1(a2 + a1)
√

Π(a1, a2)

+
Θ(Π(a1, a2))Θ(a2 − a

(0)
2 )

(a1 + a2)a2
√

Π(a1, a2)
,

which is exactly equal to the original integrand on the
phase space for which both cuts are included. Both inte-
grands can be integrated analytically, so that the multi-
channeling procedure can be applied to generate their
sum. For this solution, the only problem is that, again,
“too much” phase space is generated.
(1) The a2-variable. In order to integrate over the a2-
variable, Π(a1, a2) is more conveniently written as

Π(a1, a2) = 4(a+
2 (a1)− a2)(a2 − a−

2 (a1)), (22)

with

a±
2 (a1) :=

1
2

(
1 +

sk−1 − σk

sk
+
(
1− 2a1 − sk−1 − σk

sk

)
c
)

± s
(
a1

(
1− a1 − sk−1 − σk

sk

)
− σk

sk

)1/2
. (23)

Then the general a2-integral is given by

∫ a+
2

a−
2

da2
1

(a2 + h)
√

(a+
2 − a2)(a2 − a−

2 )
,
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with h = 0 if no cut-off on a2 is desirable, and h related
to a

(0)
2 or h = a1, depending on the solution mentioned

above if a cut-off is desirable. By substituting a2 ← a2−h,
this integral can be written as

∫ ā+
2

ā−
2

da2
1

a2

√
(ā+

2 − a2)(a2 − ā−
2 )

=
−2√
ā+
2 ā−

2

[
arctan

(
ā−
2 (ā+

2 − a2)
ā+
2 (a2 − ā−

2 )

)]ā+
2

ā−
2

=
π√

ā+
2 ā−

2

,

with ā±
2 = a±

2 + h. The explicit indefinite integral shows
that the variable a2 can be generated by inversion.
(2) The a1-variable. We start this section by mentioning
that, in the case p2

k+1 = σk+1 �= 0, the variables

a
(k)
1 =

pk · pk+1

Qk · pk+1

can be expressed in terms of the “massless” ã
(k)
1 defined in

terms of the “long” component p
(L)
k+1 of pk+1 in the CMFk:

if p
(L)
k+1 = (p0

k+1, β
−1
k �pk+1) and p

(S)
k+1 = (p0

k+1,−β−1
k �pk+1)

with

βk :=
|�pk+1|
p0

k+1
=

√
λ(sk+1, σk+1, sk)

sk+1 − σk+1 − sk
, (24)

then pk+1 = ((1 + βk)/2)p(L)
k+1 + ((1− βk)/2)p(S)

k+1, and

ã
(k)
1 :=

pk · p(L)
k+1

Qk · p(L)
k+1

= β−1
k a

(k)
1 − h1

with

h1 :=
1− βk

2βk

(
1 +

σk − sk−1

sk

)
.

Since the relation between a
(k)
1 and ã

(k)
1 is linear, the two-

body phase space is still expressible in terms of a
(k)
1 scaled

by βk. The generic a1-integral is given by

∫ amax
1

amin
1

da1
1

(a1 + h1)
√

(a+
2 (a1) + h(a1))(a−

2 (a1) + h(a1))
,

(25)
with a±

2 as defined in (23), h is a constant (for this in-
tegral) or h(a1) = a1. The kinematical integration limits,
coming from the requirement that a±

2 (a1) are real, are
given by

a±
1 =

1
2

(
1 +

σk − sk−1

sk
±
√

λ

(
1,

σk

sk
,
sk−1

sk

))
.

In the massless case we get a−
1 = 0, a+

1 = 1 − sk−1/sk

and we have to impose a lower bound on a1 given by

a
(0)
1 = σk+1,k/pk+1 ·Qk. In all cases for the form of h(a1),

the a1-integral is of the type
∫ amax

1

amin
1

da1
1

(a1 + h1)f(a1)

with

f(a1) :=
√

a2
1 + 2va1 + w2, v2 < w2, (26)

and the indefinite integral is given by
∫

da1
1

(a1 + h1)f(a1)

=
1

f(−h1)
log
(

a1 + h1 + f(a1)− f(−h1)
a1 + h1 + f(a1) + f(−h1)

)
,

which is analytically invertible. The definite integral
(times π/4 from the a2-integral and a factor 1/βk if pk+1
is massive) gives the weight factors in the generation of
a1, a2 for the closed antenna.
(3) The a1-variable in the case m = 1. This refers to (15),
where we have c = −1 and a2 = a1 + µ with

µ :=
sk−1 − σk

sk
,

so that
∫ amax

1

amin
1

da1
1

a1(1− a1)(a1 + µ)(1− µ− a1)
(27)

is the integral to be performed. Since the integrand is equal
to

1
a1(a1 + µ)

+
1

a1(1− µ− a1)
+

1
(a1 + µ)(1− a1)

+
1

(1− a1)(1− µ− a1)
,

we see that the generation of a1 can be done easily us-
ing the multi-channel technique with four channels with
weight

wi =
1

g
(2)
i ei − g

(1)
i di

(
log

(
g
(1)
i amax

1 + di

g
(2)
i amax

1 + ei

)

− log

(
g
(1)
i amin

1 + di

g
(2)
i amin

1 + ei

))
;

refer to Table 6. The soft factor will simply be equal to∑4
i=1 wi. The integration over the azimuthal angle, re-

placing the a2-integration, gives an extra factor of 2π.

A.3 Antenna split

With q1 ∝ (1, 0, 01) and q2 ∝ (1, 0, 0,−1), the two-body
phase space integral (14) assumes the form

∫
ds1ds2dQz (28)
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Table 6. Values referred to in the text

i di ei g
(1)
i g

(2)
i

1 0 µ + +
2 0 1 − µ + −
3 µ 1 + −
4 1 1 − µ − −

Table 7. See text

i di ei g
(1)
i g

(2)
i

1 E1 E2 + +
2 E1 E2 + −
3 E1 E2 + −
4 E1 E2 − −

× Θ(
√

s−√s1 −√s2)Θ(s1 − s
(0)
1 )Θ(s2 − s

(0)
2 )

s1s2(E1(s1, s2)2 −Q2
z)(E2(s1, s2)2 −Q2

z)
,

with the energies

E1(s1, s2) :=
s + s1 − s2

2
√

s
, E2(s1, s2) :=

√
s− E1(s1, s2),

and where s
(0)
1,2 are the sums of the matrix elements σij

(9) corresponding with the momenta in the two antennas
to be generated. Qz is integrated between the kinematical
limits ±(E2

1 − s2
1)

1/2, and can be treated in a way sim-
ilar to the one described in the previous paragraph, by
multi-channeling over four channels; see Table 7. The fi-
nal weight is the sum of the channel-weights, divided by
the (dimensionful) factor 4E1E2. The generation of s1, s2
is a specific case of a more general problem described in
Appendix B.3.

B Open antenna

The three variables needed to describe the open antenna
are sk−1, a

(k)
1 and ϕ(k). In each CMFk, the ϕ(k)-variable

should be generated with uniform distribution between 0
and 2π, and the a

(k)
1 -variable should be distributed follow-

ing 1/a
(k)
1 between

a
(k)
1,+ =

sk + σk − sk−1 + βk

√
λ(s, σk, sk−1)

2sk

a
(k)
1,− = max

[
sk + σk − sk−1 − βk

√
λ(s, σk, sk−1)

2sk
,

σk+1,k

pk+1 ·Qk

]
,

with βk as defined in (24). The normalized density for
these generations is equal to

2βk

πLka
(k)
1

=

√
λ(sk+1, σk+1, sk)
πLk(pk+1 · pk)

with

Lk = log(a(k)
1,+/a

(k)
1,−).

This suggests one to use

gk+1(sk) :=

√
λ(sk+1, σk+1, Σk)

(sk −Σk)
√

λ(sk+1, σk+1, sk)

=
d

dsk
log(

−sk − Σk +
√

λ(sk+1, σk+1, sk) −√λ(sk+1, σk+1, Σk)

sk − Σk +
√

λ(sk+1, σk+1, sk) +
√

λ(sk+1, σk+1, Σk)

)
,

instead of (10) for the case that βk �= 1. The logarithm
contributes to the weight as a soft factor again. For small
values of the squared masses σk, the factor in the nu-
merator will be canceled by sk+1 − Σk+1 in the denomi-
nator of gk+2(sk+1). Just as in the case of the closed an-
tenna, we end up with one remaining, and desirable, factor
s2 − Σ2 = 2(p2 · p1) in the denominator of the open an-
tenna density, which cannot be achieved by the generation
of the a

(k)
1 -variables.

Let us denote the soft factor coming from the sk-
generation by

Gk+1 :=
∫ sk+1−∆k

Λk

dskgk+1(sk),

then the complete density resulting from the decomposi-
tion (16) is

dD0(Qn; pn, . . . , p1)
dΦn(Qn; pn, . . . , p1)

=
(q1 ·Qn)

√
λ(sn, σn, Σn−1)Bn

(q1 · pn)(pn · pn−1) · · · (p3 · p2)(p2 · p1)
,

with soft factor

Bn :=
1

(4π)n−1G3L3L2

4∏

k=n

1
GkLk

√

1− 4σk−1Σk−2

(sk−1 −Σk−1)2
.

The factor p1 · q2 is missing in the denominator of the
density, which is the reason why we call this an open an-
tenna. Other open antennas can be obtained by starting
with a decomposition of Qn into two momenta, from each
of which open antennas of the above type are generated,
with initial momentum q1 for the one, and q2 for the other.

In order to digress on this procedure, let us extend the
labeling a bit. With a set {I1, I2, . . . , In} of n non-equal
labels, we write

QIk
:=

k∑

m=1

pIm , sIk
:= Q2

Ik

and so on. Now take n = M + N and let

{I1, . . . , IN} := {M + 1, M + 2, . . . , M + N},
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{J1, . . . , JM} := {M, M − 1, . . . , 2, 1}.

We introduce pIN+1 = q1, pJM+1 = q2, and the decompo-
sition

dsJM
dsIN

dΦ2(Qn; sIN
, sJM

; QIN
, QJM

)
× dD0(QIN

; pIN
, pIN−1 , . . . , pI1)

× dD0(QJM
; pJM

, pJM−1 , . . . , pJ1),

which produces the density

dDM (Qn; pn, . . . , p1)
dΦn(Qn; pn, . . . , p1)

=
2Q2

nBJM
BIN

π
√

λ(Q2
n, sJM

, sIN
)

× (pM+1 · pM )
(q1 · pn)(pn · pn−1) · · · (p2 · p1)(p1 · q2)

× (q1 ·QIN
)(q2 ·QJM

)

×
√

λ(sIN
, σIN

, ΣIN−1)λ(sJM
, σJM

, ΣJM−1). (29)

In order to cancel the “undesirable” factors on the third
and fourth line, we need to take care of the generation of
sIN

, sJM
,

QIN
, QJM

.

B.1 Generation of QIN , QJM

Since q1 ∝ (1, 0, 0, 1) and q2 ∝ (1, 0, 0,−1), we can write

a1 =
q1 ·QIN

q1 ·Qn
and

QJM
· q2

Qn · q2
= a1 + µ,

with

µ =
sJM
− sIN

sn
,

so that the generation of an azimuthal angle ϕ between 0
and 2π with the uniform distribution, and the generation
of a1 with a density proportional to

1
a1(a1 + µ)

between

a±
1 =

sn + sIN
− sJM

±√λ(sn, sIN
, sJM

)
2sn

leads to the total density

dΦ2(Qn; sIN
, sJM

; QIN
, QJM

)

× 2µ

π log
a+
1 (a−

1 + µ)
a−
1 (a+

1 + µ)

(q1 ·Qn)(Qn · q2)
(q1 ·QIN

)(QJM
· q2)

.

B.2 Generation of sIN
, sJM

If M = 1, then sJM
= σJM

, and we only need to generate
sIN

with a density proportional to

1√
λ(sIN

, σIN
, ΣIN−1)

=
d

dsIN

log
(
sIN
− σIN

−ΣIN−1 +
√

λ(sIN
, σIN

, ΣIN−1)
)

.

This density cancels the corresponding factor in the total
antenna density. Something similar can be done if N = 1.

B.3 If N > 1 and M > 1

Now both sIN
and sJM

have to be generated, in the region
where s

1/2
n − s

1/2
IN
− s

1/2
JM

> 0. This is far more complicated
than the previous case, and we restrict ourselves to a den-
sity with a denominator proportional to (sIN

−ΣIN
)(sJM

−
ΣJM

). Because σIN
ΣIN−1 and σJM

ΣJM−1 may be consid-
ered small, it still cancels the factor

√
λ(sIN

, σIN
, ΣIN−1)λ(sJM

, σJM
, ΣJM−1)

in (29). We shall write s1, s2 instead of sIN
, sJM

from now
on, and denote m := s

1/2
n ,

m2
1 := ΣIN

, c2
1 :=

N∑

K,L=1

σIK ,IL
and

m2
2 := ΣJM

, c2
2 :=

M∑

K,L=1

σJK ,JL
.

We choose first to generate s1, and then s2, so that the
integral, corresponding with the generation, becomes

∫ (m−m2)2

c2
1

ds1

s1 −m2
1

∫ (m−√
s1)2

c2
2

ds2

s2 −m2
2
.

The s2-integral is simple, and shows that s2 can easily
be obtained by inversion. After integration over s2, the
s1-integral becomes

∫ (m−m2)2

c2
1

ds1

s1 −m2
1

× [log
(
(m−√s1)2 −m2

2
)− log

(
c2
2 −m2

2
)]

.

The s1-variable distributed following this integrand can
be obtained with a high efficiency by rejection from the
density proportional to 1/(s1−m2

1). The total integral can
be calculated, and is given by

∑

ρ,ε=±1

[
Li
(

x1 + m1

m + ρm2 + εm1

)

+ log
(

m + ρm2 − x1

m

)
log
(

x1 + m1

m + ρm2 + εm1

)]m−m2

x1=c1
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− log
(

c2
2 −m2

2

m2

)
log
(

(m−m2)2 −m2
1

c2
1 −m2

1

)
,

where

Li(x) :=
∞∑

n=1

(1− x)n

n2 .

C SARGE

In this appendix, we give a short review of SARGE and
present the adaptations applied in SARGE.n. We need to
start with the establishment of some notation.
Hp is a Lorentz transformation that boosts momen-

tum p to ((p2)1/2, 0, 0, 0). Rp is a Lorentz transformation
that rotates momentum p to (p0, 0, 0, |�p|). The standard
representation of a unit vector in terms of parameters
z ∈ [−1, 1] and ϕ ∈ [0, 2π] is denoted by

n̂(z, ϕ) := (
√

1− z2 sin ϕ,
√

1− z2 cos ϕ, z).

Pn ⊂ [−1, 1]n is the n-dimensional polytope, which con-
sists of the support of the indicator function

ϑPn(x1, x2, . . . , xn) :=
n∏

i=1

Θ(1− |xi|)

×
n∏

j,k=1

Θ(1− |xj − xk|).

The algorithm for the generation of n final-state momenta
with a single antenna structure without initial-state mo-
menta as given in [7] is the following algorithm.

Algorithm C.1

(1) generate two massless momenta q1, qn, back-to-back;
(2) generate (x1, . . . , x2n−4) ∈ P2n−4 and (ϕ2, . . . ,
ϕn−1) ∈ [0, 2π]n−2, all uniformly distributed;
(3) for i = 2, . . . , n−2 construct qi following (with x0 :=0)

b1 ← qi−1 + qn, b2 ← Hb1qi−1,

ξ1 ← e(x2i−3−x2i−4) log ξm , ξ2 ← e(x2i−2−x2i−4) log ξm ,

v0 ←
√

(qi−1 · qn)
2

(ξ2 + ξ1), z ← ξ2 − ξ1

ξ2 + ξ1
,

�v ← q0R−1
b2

n̂(z, ϕi), qi ← H−1
b1

v;

(4) put pi ← uHQqi for i = 1, . . . , n, where Q =
∑n

i=1 qi

and u =
√

s/Q2.
The density with which the generated momenta are

distributed is then given by

dΦn(P ; p1, . . . , pn)

× s2

2πn−2 gn(p1, p2, . . . , pn)An(p1, p2, . . . , pn), (30)

with P = (s1/2, 0, 0, 0), where An(p1, p2, . . . , pn) is defined
in (2), and where

gn(p1, p2, . . . , pn) :=
ϑP2n−4(x1, x2, . . . , x2n−4)

(2n− 3)(log ξm)2n−4 ,

with

x2i−3 =
1

log ξm
log

(pi−1 · pi)
(p1 · pn)

and

x2i−4 =
1

log ξm
log

(pi · pn)
(p1 · pn)

, i = 2, . . . , n− 2.

The density obtained before step 4 of Algorithm C.1 is in-
variant under simultaneous scaling of all momenta, but
the sum of the momenta is not at rest. In order to achieve
this, the scaling symmetry has to be broken. In order
to include the initial-state momenta in the density, more
symmetries have to be broken: the symmetry under cyclic
permutations of the momenta, a part of the simultaneous
rotation symmetry of the momenta, and finally the sym-
metry under the reflection permutation (1, 2, . . . , n) �→
(n, n− 1, . . . , 1).

Let us denote 
k� = k mod n. The cyclic symmetry
is broken through the following algorithm.

Algorithm C.2

(1) choose a k ∈ {0, 2, . . . , n− 1} with relative probability
(p�k� · pk+1);
(2) put {p1, p2, . . . , pn} ← {p�1+k�, p�2+k�, . . . , p�n+k�}. As
a result, the function An in the density (30) is replaced by

n

(pn · p1) + (p1 · p2) + · · ·+ (pn−1 · pn)
×(pn · p1)An(p1, . . . , pn).

The factor (pn ·p1) in the denominator of An is replaced by
the average of all factors. Next, part of the rotation sym-
metry and the symmetry under the reflection permutation
are broken through the following algorithm.

Algorithm C.3

(1) generate ϕ ∈ [0, 2π] uniformly distributed, and z ∈
[−1, 1− c];
(2) rotate all momenta such that �p1 lies along n̂(z, ϕ).

If we denote q1 := (1/2)s1/2(1, 0, 0, 1), this leads to an
extra factor

1
2π log(2/c)

×
1
2
√

sp0
1

(q1 · p1)

in the density. The cut-off c can be taken equal to s0/
(s1/2p0

1), where s0 should be a cut-off on the invariant
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mass (q1 +p1)2. Notice that p0
1 = (P ·p1)/s1/2, so that the

new factor in the density becomes

1
4π log(2(P · p1)/s0)

× (P · p1)
(q1 · p1)

.

In order to include a factor proportional to (pn · q2) in the
denominator of the density, where q2 := (1/2)s1/2(1, 0,
0,−1), Algorithm C.3 can be preceded by the following
algorithm.

Algorithm C.4

(1) choose with equal probabilities whether to rotate all
momenta such that �p1 lies along n̂(z, ϕ), or that �pn lies
along −n̂(z, ϕ).

The total density (30) becomes then such that An is
replaced by

n

4π
×

(P · p1)(pn · q2)
log(2(P · p1)/s0)

+
(q1 · p1)(P · pn)
log(2(P · pn)/s0)

(pn · p1) + (p1 · p2) + · · ·+ (pn−1 · pn)
× An+2(q1, p1, p2, . . . , pn−1, pn, q2).

In the end, we want to obtain all permutations in the mo-
menta {p1, p2, . . . , pn, q2} of the above density. Some of
them can be obtained by relabeling, and for the others,
which change the position of q2, we can do the following.
If the cyclic permutation in Algorithm C.2 is chosen with
relative probability (p�k� · pk+1)(pk+i · pk+1+i), then the
factor (pn · p1)(pi · pi+1) in the denominator of An is re-
placed by the average over its cyclic permutations. Then
we can choose with equal relative probabilities whether to
rotate all final-state momenta such that �p1 lies along n̂, �pi

lies along −n̂, �pi+1 lies along −n̂, or �pn lies along n̂. This
will lead to density that is proportional to

An+2(q1, p1, p2, . . . , pi−1, pi, q2, pi+1, pi+2, . . . , pn−1, pn).

D Permutations

For the analyses of the the multi-channel procedure over
the antenna densities for the different permutations of the
momenta, we need an enumeration of the permutations.
In other words, we need a mapping

{1, 2, . . . , n!} �→ Symn.

During a computation, one could, of course, just store an
enumeration in the memory of the computer, but this costs
an amount of memory of O(n!). Every algorithm that de-
livers all permutations supplies a mapping a priori, but
this algorithm has an a priori computational complexity
of O(n!).

We propose the following algorithm as a solution. Any
number l ∈ {1, 2, . . . , n!} can uniquely be written in the
basis of the lower factorials: l = 1 + l2 + l32! + l43! +
· · ·+ ln(n − 1)!, where lk ∈ {0, 1, . . . , k − 1}. Let γ

(k)
i de-

note the i-fold cyclic permutation of the first k elements
of (1, 2, . . . , n), for example γ

(3)
2 (1, 2, 3, 4) = (2, 3, 1, 4).

Then any permutation of (1, 2, . . . , n) can be written as
γ

(2)
l2

γ
(3)
l3
· · · γ(n)

ln
(1, 2, . . . , n). This leads to a mapping of the

required kind, which has a complexity of O(n2). In a loop
delivering all permutations, it can easily be reduced to
complexity O(n) at the cost of an amount of memory of
O(n).
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